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Introduction

Study overview

This analysis compares various citation count samples of PubMed citations available from the Thomson
Reuters ISI Web of Knowledge (WoK). The analysis is split in two main categories (fields): articles from
the field of Neuroscience (NS) and articles from Molecular Biology (MB; all articles combined with
Life Sciences, but excluding the overlap with Neuroscience articles). Note that there still could be remaining
articles for both fields in the general Thomson Reuters database and that are not part of PubMed. However,
in the general in the biomedical field, only publications indexed by PubMed are universally acknowledged by
all scientific institutions.

For both fields, citation counts for the whole set of data articles and a random sample with an equal
distribution of publication years as in the data articles were collected, as well as 20 (ten per field) sets of
author-specific articles. Details of how these sets were selected will be explained in Settings and data. The
fundamental statistical issues that are addressed by this work are:
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1. Is there a measurable effect on an article’s total citation count when it is a data (i.e., atlas or database)
publication? Specifically, is there a statistically significant difference between the distribution of data
articles and an equally sized random article sample (of non-data articles, but covering the same number
of articles per year)?

2. For any differences we find, can those differences be quantified?
3. Furthermore, who are the most prolific data publishing scientists in their respective fields?
4. And does such an author’s data article citation counts significantly diverge from her or his non-data

article citation counts?

To address the first two questions, we perform the following analyses: A statistical test establishes if data
citations arise from the same distribution as a set of random article citations of the same size in each field. In
particular, we establish if the data article citation distributions have a significant shift to the right (are “greater
than”, i.e., using a one-sided test) when compared to their respective random “baselines”. The empirical
Cumulative Distribution Functions (CDFs) of the data and random article citation distributions are
plotted and manually inspected to establish the magnitude of any differences. The probability difference
of reaching the field’s median citation count and the citation count difference for the top 10% most cited
articles (the top decile) between data and random sets are used to quantify those differences. All this will be
addressed in the Field-specific citation distributions section.

The last section, Author-specific citation distributions, addresses the remaining two questions. A ranking of
the most prolific data-publishing Neuroscience and Molecular Biology scientists is established by defining a
data article citation index (DAC-index). For reasons explained below, this DAC-index is defined as the
sum of logs of an author’s data citations. Finally, for the top ten data-publishing authors (according to that
DAC-index) we apply a statistical test to evaluate if their data articles received significantly more citations
than their other (non-data) articles. Their median data and other article citation counts are calculated to
quantify this difference.

Settings and data

R setup

library(dplyr, warn.conflicts=F) # var. data manipulation functions, sample_n
library(readr) # data import
set.seed(17)
par(mfrow=c(1,1))

Data article selection

The selection of data articles are citations with specific PubMed Medical Subject Heading (MeSH) terms,
either for databases or atlases (see below). (Note that the intuitively also relevant-seeming MeSH term “Data
Collection” is used to tag works about data collection, not data collections per se.) There are at least four
reasons that favor a MeSH-based approach:

1. A MeSH-based selection represents a robust methodological basis for selecting articles that contain or
present data sets, as MeSH assignments are expert curated.

2. This selection strategy is based on an objective source as opposed to a necessarily biased list of articles
by a meta-repository, e.g. the Neuroscience Information Framework1.

3. The approach minimizes any ambiguity in reproducing our findings (e.g., if we had used a statistical
article classifier instead), as only an additional curation effort by the National Library of Medicine
(NLM) can introduce (explainable) changes in the datasets.

1It might be worthy to mention that for any such alternative strategy, all citation lists were substantially shorter than the
MeSH-based list.
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4. The strategy can be repeated easily in the future – to be precise, as long as PubMed carries out its
PubMed MeSH curation, an endeavor which the NLM has been engaged with for several decades now.

For example, articles tagged with “Databases, Factual” are articles that must refer to “extensive collections,
reputedly complete, of facts and data garnered from material of a specialized subject area and made available
for analysis and application.” We explored the use of a number of other MeSH terms as well, e.g., Magnetic
Resonance Imaging, but selecting articles with any other term produces substantial numbers of articles that
do not publish data, as their definitions do not require the presence of data and articles might just discuss
MRI techniques. However, while we could not identify further MeSH terms that could serve as indicators of
data articles, this cannot be a claim that our list is exhaustive. Note that we have purposefully excluded
“Databases, Bibliographic” from the Databases terms, as that MeSH term covers works that are not necessarily
data-related, but rather reference other scientifc works.

Article queries were ran against Thomson Reuter’s ISI WoK, limiting the retrieval to the years 1950 to 2013
(inclusive), and using the following expressions to produce the stated result sizes:

## Data articles selection
1: MH=(Databases, Chemical OR

Databases, Factual OR
Databases, Genetic OR
Databases, Nucleic Acid OR
Databases, Pharmaceutical OR
Databases, Protein OR
Atlases as Topic)

#> 66K data articles

## Neuroscience article selection
2: SU=(Neurosciences & Neurology)
#> 2.545M NS articles

## Molecular Biology article selection
3: SU=((Biochemistry & Molecular Biology OR

Life Sciences & Biomedicine) NOT
Neurosciences & Neurology)

#> 6.493M MB articles

## Neuroscience data article selection
4: #1 AND #2
#> 4,575 NS data articles

## Molecular Biology data article selection
5: #1 AND #3
#> 30,612 MB data articles

The random articles are selected by limiting the query to randomly selected PubMed IDs proportional to
the number of data article citations for each year and category (NS, MB). For example, if there are 200 NS
data articles for some year, 1000 random PubMed IDs for the same year are randomly sampled from our local
PubMed database and the corresponding NS citations downloaded. This convoluted procedure is required
because our local PubMed mirror (from the NLM) does not contain the subject field assignments of the
Thomson Reuter’s WoK (to MB and/or NS). In other words, we first select far more random PubMed IDs
than necessary to cover a given year but then download only those articles that are assigned to the relevant
field.

For the nature of this study, it is noteworthy that the random sets can include (randomly selected) data
articles by chance. This is required to allow us to quantify the average citation impact of data articles relative
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to the average citation impact of the entire field. Therefore, the random samples are made over the whole
set of articles in the field and may contain data articles as well. (And indeed, if the respective two sets we
provide are compared, tiny overlaps between the data and random article sets can be found.)

As will be shown, from the set of data articles in each field we then establish a ranking of the most prolific
data-publishing authors by defining a DAC-index. Therefore, author articles for each of the top ten
data-publishing authors (established by that DAC-index) are selected by querying for the respective author
name. These queries rely on the WoK advanced query field AU and use both an author’s abbreviated and full
name. All articles that intersect with the relevant field-specific set for that author (i.e., either NS or MB) are
downloaded.

Neuroscience citations

The resulting data and a random article set and the ten author-specific article sets have the following
statistical descriptors.

• TC - times cited (citation count)
• PY - publication year
• PM - PubMed ID2

• AU - author names

NS.data <- read_tsv('neurosci.data.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.data)

## TC PY PM AU
## Min. : 0.00 Min. :1964 Min. : 357457 Length:4575
## 1st Qu.: 2.00 1st Qu.:2005 1st Qu.:16328768 Class :character
## Median : 8.00 Median :2009 Median :19834022 Mode :character
## Mean : 23.11 Mean :2008 Mean :18648030
## 3rd Qu.: 22.00 3rd Qu.:2012 3rd Qu.:22243704
## Max. :2619.00 Max. :2013 Max. :24600800

NS.rnd <- read_tsv('neurosci.random.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

2N.B. despite summarized here as a discrete variable here, that has no impact on the study.
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summary(NS.rnd)

## TC PY PM AU
## Min. : 0.00 Min. :1964 Min. : 125556 Length:7304
## 1st Qu.: 1.00 1st Qu.:2006 1st Qu.:16924483 Class :character
## Median : 6.00 Median :2009 Median :19782472 Mode :character
## Mean : 16.93 Mean :2008 Mean :18749723
## 3rd Qu.: 17.00 3rd Qu.:2012 3rd Qu.:22235782
## Max. :1023.00 Max. :2013 Max. :24941716

NS.aut <- list(Butcher=read_tsv('neurosci.butcher.tsv'))

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["Butcher"]])

## TC PY PM AU
## Min. : 3.00 Min. :1986 Min. : 2951184 Length:26
## 1st Qu.: 12.75 1st Qu.:2007 1st Qu.:17375992 Class :character
## Median : 34.50 Median :2008 Median :18631321 Mode :character
## Mean : 55.15 Mean :2008 Mean :18692641
## 3rd Qu.: 80.00 3rd Qu.:2011 3rd Qu.:21032852
## Max. :218.00 Max. :2013 Max. :24139680

NS.aut[["DeVivo"]] <- read_tsv('neurosci.devivo.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["DeVivo"]])

## TC PY PM AU
## Min. : 0.00 Min. :1979 Min. : 492764 Length:99
## 1st Qu.: 12.00 1st Qu.:1992 1st Qu.: 7255136 Class :character
## Median : 26.00 Median :1999 Median :10569446 Mode :character
## Mean : 43.03 Mean :1998 Mean :10715413
## 3rd Qu.: 56.00 3rd Qu.:2004 3rd Qu.:15512332
## Max. :352.00 Max. :2012 Max. :23100450
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NS.aut[["Lu"]] <- read_tsv('neurosci.lu.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["Lu"]])

## TC PY PM AU
## Min. : 0.0 Min. :1989 Min. : 1325239 Length:181
## 1st Qu.: 6.0 1st Qu.:1998 1st Qu.: 9657549 Class :character
## Median : 16.0 Median :2002 Median :12421340 Mode :character
## Mean : 39.5 Mean :2003 Mean :13953887
## 3rd Qu.: 44.0 3rd Qu.:2009 3rd Qu.:19118603
## Max. :377.0 Max. :2013 Max. :24391036

NS.aut[["Maas"]] <- read_tsv('neurosci.maas.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["Maas"]])

## TC PY PM AU
## Min. : 0.00 Min. :2002 Min. :11787492 Length:86
## 1st Qu.: 9.00 1st Qu.:2006 1st Qu.:16441528 Class :character
## Median : 24.50 Median :2008 Median :18402754 Mode :character
## Mean : 46.72 Mean :2008 Mean :18673923
## 3rd Qu.: 63.25 3rd Qu.:2011 3rd Qu.:21274122
## Max. :320.00 Max. :2013 Max. :24139680

NS.aut[["McHugh"]] <- read_tsv('neurosci.mchugh.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )
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summary(NS.aut[["McHugh"]])

## TC PY PM AU
## Min. : 4.00 Min. :2007 Min. :17375988 Length:21
## 1st Qu.: 25.00 1st Qu.:2007 1st Qu.:17375993 Class :character
## Median : 44.00 Median :2008 Median :18578634 Mode :character
## Mean : 64.86 Mean :2009 Mean :19199758
## 3rd Qu.: 84.00 3rd Qu.:2010 3rd Qu.:20156956
## Max. :218.00 Max. :2013 Max. :24139680

NS.aut[["Marmarou"]] <- read_tsv('neurosci.marmarou.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["Mermarou"]])

## Length Class Mode
## 0 NULL NULL

NS.aut[["Murray"]] <- read_tsv('neurosci.murray.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["Murray"]])

## TC PY PM AU
## Min. : 0.00 Min. :1983 Min. : 2037083 Length:99
## 1st Qu.: 13.50 1st Qu.:1999 1st Qu.:10623064 Class :character
## Median : 38.00 Median :2006 Median :16958582 Mode :character
## Mean : 84.48 Mean :2003 Mean :15002249
## 3rd Qu.: 85.00 3rd Qu.:2010 3rd Qu.:20298196
## Max. :1759.00 Max. :2013 Max. :24139680

NS.aut[["Steyerb."]] <- read_tsv('neurosci.steyerberg.tsv')

## Parsed with column specification:
## cols(
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## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["Steyerb."]])

## TC PY PM AU
## Min. : 0.00 Min. :1994 Min. : 7489218 Length:101
## 1st Qu.: 10.00 1st Qu.:2004 1st Qu.:15335110 Class :character
## Median : 23.00 Median :2007 Median :17634755 Mode :character
## Mean : 39.09 Mean :2007 Mean :17283688
## 3rd Qu.: 52.00 3rd Qu.:2010 3rd Qu.:20814011
## Max. :223.00 Max. :2013 Max. :24139680

NS.aut[["Toga"]] <- read_tsv('neurosci.toga.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["Toga"]])

## TC PY PM AU
## Min. : 0.00 Min. :1979 Min. : 469960 Length:553
## 1st Qu.: 10.00 1st Qu.:2004 1st Qu.:15261329 Class :character
## Median : 29.00 Median :2008 Median :18512163 Mode :character
## Mean : 58.39 Mean :2007 Mean :17448806
## 3rd Qu.: 60.00 3rd Qu.:2011 3rd Qu.:21304146
## Max. :1637.00 Max. :2013 Max. :24683973

NS.aut[["Van Essen"]] <- read_tsv('neurosci.van_essen.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(NS.aut[["Van Essen"]])

## TC PY PM AU
## Min. : 0.00 Min. :1973 Min. : 120129 Length:140
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## 1st Qu.: 25.75 1st Qu.:1990 1st Qu.: 6531636 Class :character
## Median : 65.00 Median :1999 Median :10797508 Mode :character
## Mean : 183.24 Mean :1998 Mean :11888799
## 3rd Qu.: 198.75 3rd Qu.:2007 3rd Qu.:18094724
## Max. :3281.00 Max. :2013 Max. :24683992

Molecular Biology citations

Molecular Biology (MB) articles include Life Science, but exclude Neuroscience (NS) articles. The resulting
data and a random article set and the ten author-specific article sets have the following statistical descriptors
(particularly, publication years and citation counts are of interest).

• TC - times cited (citation count)
• PY - publication year
• PM - PubMed ID3

• AU - author names

MB.data <- read_tsv('molbio.data.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.data)

## TC PY PM AU
## Min. : 0.00 Min. :1975 Min. : 1194384 Length:30612
## 1st Qu.: 3.00 1st Qu.:2003 1st Qu.:14527528 Class :character
## Median : 12.00 Median :2007 Median :17885655 Mode :character
## Mean : 44.06 Mean :2006 Mean :17116994
## 3rd Qu.: 34.00 3rd Qu.:2010 3rd Qu.:20952426
## Max. :38693.00 Max. :2013 Max. :25145244

MB.rnd <- read_tsv('molbio.random.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

3N.B. despite summarized here as a discrete variable here, that has no impact on the study.
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summary(MB.rnd)

## TC PY PM AU
## Min. : 0.0 Min. :1966 Min. : 1280702 Length:34996
## 1st Qu.: 3.0 1st Qu.:2003 1st Qu.:14578001 Class :character
## Median : 11.0 Median :2007 Median :17637019 Mode :character
## Mean : 26.2 Mean :2006 Mean :17054880
## 3rd Qu.: 27.0 3rd Qu.:2010 3rd Qu.:20853271
## Max. :2743.0 Max. :2013 Max. :24712276

MB.aut <- list(Appel=read_tsv('molbio.appel.tsv'))

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.aut[["Appel"]])

## TC PY PM AU
## Min. : 0.00 Min. :1988 Min. : 1802690 Length:78
## 1st Qu.: 16.50 1st Qu.:1996 1st Qu.: 8998564 Class :character
## Median : 33.50 Median :1999 Median :10602264 Mode :character
## Mean : 85.68 Mean :2000 Mean :11700010
## 3rd Qu.: 86.75 3rd Qu.:2004 3rd Qu.:15249126
## Max. :1373.00 Max. :2009 Max. :19391179

MB.aut[["Bairoch"]] <- read_tsv('molbio.bairoch.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.aut[["Bairoch"]])

## TC PY PM AU
## Min. : 0.0 Min. :1982 Min. : 1286669 Length:157
## 1st Qu.: 26.0 1st Qu.:1995 1st Qu.: 8506147 Class :character
## Median : 77.0 Median :1999 Median :10356335 Mode :character
## Mean : 187.9 Mean :2000 Mean :11637757
## 3rd Qu.: 226.0 3rd Qu.:2004 3rd Qu.:15608167
## Max. :1670.0 Max. :2013 Max. :23353650
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MB.aut[["Dunker"]] <- read_tsv('molbio.dunker.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.aut[["Dunker"]])

## TC PY PM AU
## Min. : 0.00 Min. :1969 Min. : 36395 Length:178
## 1st Qu.: 12.25 1st Qu.:1999 1st Qu.:10681844 Class :character
## Median : 40.00 Median :2006 Median :16667782 Mode :character
## Mean : 95.33 Mean :2001 Mean :14591739
## 3rd Qu.: 94.00 3rd Qu.:2009 3rd Qu.:19592405
## Max. :986.00 Max. :2013 Max. :23758675

MB.aut[["Durbin"]] <- read_tsv('molbio.durbin.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.aut[["Durbin"]])

## TC PY PM AU
## Min. : 0.00 Min. :1960 Min. : 1302004 Length:108
## 1st Qu.: 29.75 1st Qu.:1998 1st Qu.:10571391 Class :character
## Median : 98.00 Median :2004 Median :14911374 Mode :character
## Mean : 362.29 Mean :2002 Mean :14574111
## 3rd Qu.: 243.75 3rd Qu.:2008 3rd Qu.:18998185
## Max. :11214.00 Max. :2013 Max. :24104757

MB.aut[["Hochstr."]] <- read_tsv('molbio.hochstrasser.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )
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summary(MB.aut[["Hochstr."]])

## TC PY PM AU
## Min. : 0.00 Min. :1988 Min. : 1281090 Length:192
## 1st Qu.: 11.00 1st Qu.:1996 1st Qu.: 8906833 Class :character
## Median : 25.00 Median :1999 Median :10610496 Mode :character
## Mean : 58.62 Mean :2001 Mean :12290706
## 3rd Qu.: 68.00 3rd Qu.:2006 3rd Qu.:16773459
## Max. :459.00 Max. :2013 Max. :23954032

MB.aut[["Koonin"]] <- read_tsv('molbio.koonin.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.aut[["Koonin"]])

## TC PY PM AU
## Min. : 0.0 Min. :1983 Min. : 1317076 Length:500
## 1st Qu.: 21.0 1st Qu.:1996 1st Qu.: 8796420 Class :character
## Median : 58.0 Median :2001 Median :11446540 Mode :character
## Mean : 135.7 Mean :2001 Mean :12538060
## 3rd Qu.: 129.5 3rd Qu.:2006 3rd Qu.:16902967
## Max. :11197.0 Max. :2013 Max. :24012761

MB.aut[["Sali"]] <- read_tsv('molbio.sali.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.aut[["Sali"]])

## TC PY PM AU
## Min. : 0.0 Min. :1970 Min. : 72956 Length:279
## 1st Qu.: 13.0 1st Qu.:1999 1st Qu.:10601956 Class :character
## Median : 37.0 Median :2006 Median :16507877 Mode :character
## Mean : 100.7 Mean :2004 Mean :15180335
## 3rd Qu.: 90.5 3rd Qu.:2010 3rd Qu.:20506463
## Max. :5854.0 Max. :2013 Max. :24197012
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MB.aut[["Sanchez"]] <- read_tsv('molbio.sanchez.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.aut[["Sanchez"]])

## TC PY PM AU
## Min. : 0.00 Min. :1992 Min. : 1281090 Length:174
## 1st Qu.: 13.00 1st Qu.:1997 1st Qu.: 9504809 Class :character
## Median : 28.00 Median :2001 Median :11452661 Mode :character
## Mean : 65.26 Mean :2002 Mean :13235713
## 3rd Qu.: 75.75 3rd Qu.:2007 3rd Qu.:17310662
## Max. :503.00 Max. :2013 Max. :23954032

MB.aut[["Skolnick"]] <- read_tsv('molbio.skolnick.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )

summary(MB.aut[["Skolnick"]])

## TC PY PM AU
## Min. : 0.0 Min. :1985 Min. : 1293893 Length:203
## 1st Qu.: 12.5 1st Qu.:1997 1st Qu.: 9468208 Class :character
## Median : 31.0 Median :2003 Median :12609858 Mode :character
## Mean : 50.1 Mean :2002 Mean :13361527
## 3rd Qu.: 57.5 3rd Qu.:2008 3rd Qu.:18169078
## Max. :586.0 Max. :2013 Max. :24204237

MB.aut[["Uversky"]] <- read_tsv('molbio.uversky.tsv')

## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )
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summary(MB.aut[["Uversky"]])

## TC PY PM AU
## Min. : 0.00 Min. :1990 Min. : 1287658 Length:301
## 1st Qu.: 11.00 1st Qu.:2003 1st Qu.:12614167 Class :character
## Median : 29.00 Median :2007 Median :17578581 Mode :character
## Mean : 72.36 Mean :2006 Mean :16895343
## 3rd Qu.: 73.00 3rd Qu.:2010 3rd Qu.:20889377
## Max. :983.00 Max. :2013 Max. :24072065

Article set size comparisons

Neuroscience has 1 database article per 546 publications. Molecular Biology has 1 such article per 212
publications. Therefore, and after adjusting for the absolute sizes of the existing literature in each field, this
indicates that there are more than two-and-a-half (2.57) as many database publications in Molecular Biology
(incl. Life Science, excl. Neuroscience) as there are in Neuroscience.

Field-specific citation distributions

Article citation distributions

The earliest model for discrete citation count per article was the log-normal distribution (Shockley 1957).
Historically, citation counts have been also fitted to power law distributions4, such as Zipf’s law5, and, in
particular, Pareto’s law6, for example in (Solla Price 1965) or (Redner 1998). However, citation counts
only exhibit power-law behavior on the most cited articles that have accumulated unusually large numbers
of citations. Therefore, a number of other distributions have been suggested, including stretched- and
q-exponential distributions (Wallace, Larivière, and Gingras 2009). The only fits that has been reported with
statistically significant goodness-of-fit tests over the entire range of citation counts (i.e., [0, ∞)) to our best
knowledge, however, are log-normal distributions (Stringer, Sales-Pardo, and Nunes Amaral 2008); There, it
has been shown that a citation distribution is log-normal if the article set is restricted to a single year and
journal. Nonetheless, as stated by Stringer, Sales-Pardo, and Amaral (2010), joining several independent
log-normal distributions can result in a distribution that approaches power-law behavior, at least for the
subset of highly cited articles. However, for the issues being addressed here, establishing the exact, underlying
distribution is not particularly relevant: By relying on the nonparametric, distribution-free (Mann-Whitney
aka. Wilcoxon) rank-sum test, we refrain from providing a conclusive answer to this issue.

Citation count comparisons

The most important potential bias when comparing citation count distributions is the underlying distribution
of publication years, because older publications are more likely to have accrued more citations simply due to
age. Therefore, the number of random articles per year should be exactly the same number of articles as
that of the data articles. Note, however, that we decided to not provide perfect matches for the early years
before 1990, as this only affects three articles in MB and 18 in NS and therefore has a negligible effect. In

4y ∼ x−α where x here would be the citation count and y an article’s cumulative probability of achieving at least less than
that number of citations (i.e., y = 1 at x = 1, because any article will have at least zero citations); Therefore, it is a CDF where
α is known as the power law slope.

5y ∼ r−β with y being an article’s citation count and r the article’s rank (i.e., order wrt. an article’s number of citations)
with any β > 0 that usually is close to unity.

6y ∼ xκ with y being the proportion of articles with a citation count ≥ x; This complementary CDF that can be associated
to the power law by setting α = 1 + κ.
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addition, for NS we choose random articles from a pool where most are from the same two years when most
of those 18 data articles were published (i.e., 1974-5); For MB, we select three random articles over the entire
relevant period (1966-89). Histograms of the number of data publications per year in each field, covering the
statistically relevant years after 1989, are shown in Figures 1 and 2.

SampleYears <- function(data.orig, data.sample, year) {
# sample the same number of cases from data.sample as are in data.orig per year
# 1. sample the same number of instances from data.sample
# as are in data.orig for year "yr"
sample_y <- function(yr, orig, sample)

sample_n(sample[sample$PY == yr,], nrow(orig[orig$PY == yr,]))
# 2. sample the same number of instances from data.sample
# as there are in data.orig for all years before "year"
base = sample_n(data.sample[data.sample$PY < year,],

nrow(data.orig[data.orig$PY < year,]))
# 3. combine the rows from base with the rows for each later year
rbind(base, Reduce(function(...) merge(..., all=T),

lapply(year:2013, function (yr)
sample_y(yr, data.orig, data.sample))))

}

PlotYears <- function(years, title="Neuroscience") {
# plot a histogram of the number of articles/year
y.table = table(years)
unique.years = unique(years)
plot(y.table, type="h", lend=1, lwd=7, xlab="Year",

xaxt="n", yaxt="n", ylab="N. Articles", frame.plot = F)
axis(1, at=seq(1989, max(unique.years) + ((max(unique.years) - 1989) %% 3), 3),

tck=-0.025, cex.axis=0.75, lty=1, lwd=1)
axis(2, at=seq(0, max(y.table), round(max(y.table) / 500) * 100),

cex.axis=0.75, tck=-0.025)
text(x=min(years) + 7, y=max(y.table) - 100, label=title)

}

NS.rnd = SampleYears(NS.data, NS.rnd, 1990)
#CompareYears(NS.data$PY, NS.rnd$PY)
PlotYears(NS.data$PY[NS.data$PY>1988])

MB.rnd = SampleYears(MB.data, MB.rnd, 1990)
#CompareYears(MB.data$PY, MB.rnd$PY, title="Molecular Biology")
PlotYears(MB.data$PY[MB.data$PY>1988], title="Molecular Biology")

The random sampling procedure shown above produces an equally-sized random article set with an equal
background distribution of years as the data article set.

Note that the mean is a poor choice to describe the average of a set of citation counts, because the true
mean is not the population mean for a non-normal, highly skewed citation distribution with extreme values
- e.g. (Wang, Song, and Barabási 2013). Therefore, instead, we use the median to describe the average
citation counts of our sets. For NS, we observe medians of 8 and 6 for the data and random article citation
sets, respectively. For MB, we observe medians of 12 and 11 for the data and random article citation sets,
respectively. In other words, the median citation count of (average) data articles is one to two counts higher
than that of average (random) articles in their field. (While we never encountered this phenomena, note that
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Figure 1: Neuroscience data/random articles per year.
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Figure 2: Molecular Biology data/random articles per year.
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if upon running this script the quoted differences in medians (2 for NS, 1 for MB) might not add up, an
exceptional sample might have been drawn and simply re-running this script should resolve the matter.)

Next, we establish if the observed increase in median article citation counts of the data over the random
articles is statistically significant. We apply a (Wilcoxon) one-sided rank-sum test to determine the significance
levels, both for Neuroscience and Molecular Biology.

wilcox.test(NS.data$TC, NS.rnd$TC, alternative="greater")

##
## Wilcoxon rank sum test with continuity correction
##
## data: NS.data$TC and NS.rnd$TC
## W = 11427000, p-value = 1.218e-14
## alternative hypothesis: true location shift is greater than 0

wilcox.test(MB.data$TC, MB.rnd$TC, alternative="greater")

##
## Wilcoxon rank sum test with continuity correction
##
## data: MB.data$TC and MB.rnd$TC
## W = 489150000, p-value < 2.2e-16
## alternative hypothesis: true location shift is greater than 0

To quantify the differences in medians in absolute terms, we measure the cumulative probability difference ∆p
at the median number of citations for random articles in both fields. This establishes how much more likely
it is for data articles to receive the same number of citations as the field’s overall average (Figures 3 and 4).

PlotLeftTail <- function (data.cites, rnd.cites, x.max=25) {
# prepare the datasets
data.ecdf = ecdf(data.cites)
rnd.ecdf = ecdf(rnd.cites)
med.cites = median(rnd.cites)
# plot both CDFs
plot(0:x.max, data.ecdf(0:x.max),

type="l", col=2, frame.plot=F,
xlab="Citations", ylab="CDF", ylim=c(0,1), cex.axis=.75)

lines(0:x.max, rnd.ecdf(0:x.max), col=4)
# describe p of data and rnd cites at the median of rnd cites
p.data = data.ecdf(med.cites)
p.rnd = rnd.ecdf(med.cites)
lines(c(med.cites, med.cites),

c(data.ecdf(med.cites), rnd.ecdf(med.cites)))
text(med.cites + 5, y=rnd.ecdf(med.cites) - .2, cex=.75, label=bquote(

P[rnd] (C == .(med.cites)) <= .(signif(p.rnd, digits=2))
))
text(med.cites + 5, y=rnd.ecdf(med.cites) - .35, cex=.75, label=bquote(

P[data] (C == .(med.cites)) <= .(signif(p.data, digits=2))
))

}
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PlotLeftTail(NS.data$TC, NS.rnd$TC)
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Figure 3: Neuroscience CDF, left tail. Red: for data article citations. Blue: for random article citations.

PlotLeftTail(MB.data$TC, MB.rnd$TC, 40)

Second, we compare the citation difference ∆C at p = 0.1 (i.e., in the last decile) in the complementary
CDF. This quantifies the number of additional citations the top 10% of data articles typically receive when
compared to the random population sample (Figures 5 and 6).

PlotHeavyTail <- function(data.cites, rnd.cites) {
# prepare the datasets
x.data = sort(unique(data.cites))
x.rnd = sort(unique(rnd.cites))
data.ecdf = ecdf(data.cites)
rnd.ecdf = ecdf(rnd.cites)
# plot both complementary CDFs (1 - CDF)
# NB: log-log plot, so don't show the zero citation probability
# NB: draws a cleaner, more legible Y-axis
plot(x.data[x.data>0], 1.0 - data.ecdf(x.data[x.data<max(x.data)]),

log="xy", ty="l", col=2, frame.plot=F,
xlab="Citations", ylab="1 - CDF", yaxt="n", cex.axis=0.75)

lines(x.rnd[x.rnd>0], 1.0 - rnd.ecdf(x.rnd[x.rnd<max(x.rnd)]), col=4)
marks = c(1.0, 0.1, 0.01, 0.001, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9)
marks = marks[marks > 1-data.ecdf(max(x.data) - 1)]
axis(2, at=marks, labels=marks, cex.axis=.75)
# describe C at p == 0.9 and the number of rnd cites at that p
delta.C = abs(quantile(data.ecdf, .9) - quantile(rnd.ecdf, .9))
C.rnd = quantile(rnd.ecdf, .9)
C.data = quantile(data.ecdf, .9)

18



0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Citations

C
D

F

Prnd(C = 11) ≤ 0.51

Pdata(C = 11) ≤ 0.49

Figure 4: Molecular Biology CDF, left tail. Red: for data article citations. Blue: for random article citations.

lines(c(quantile(data.ecdf, .9), quantile(rnd.ecdf, .9)), c(.1, .1))
text(10, y=0.02, cex=.75, label=bquote(P[data] (C > .(C.data)) == 0.1))
text(10, y=0.002, cex=.75, label=bquote(P[rnd] (C > .(C.rnd)) == 0.1))

}

PlotHeavyTail(NS.data$TC, NS.rnd$TC)

PlotHeavyTail(MB.data$TC, MB.rnd$TC)

Author-specific citation distributions

A data article citation index

One common way of ranking author citation impact today is the h-index, introduced by Hirsch (2005).
However, as the data article sets are a limited selection of an author’s works, the h-index would penalize
highly cited authors who published data articles only once (their h-index would be 1) or a few times. In
(2008), Bornmann showed that other index strategies can be more apt at predicting peer assessments than the
h-index. Furthermore, Yong (2014) claims that the h-index does not constitute a significantly more accurate
assessment than the total number of citations.

Therefore, summing up the number of citations for an author over all her publications seems more fair for
the purpose of establishing an index for ranking the most prolific data-publishing authors. Nonetheless, two
problems occur if we were to use the raw sum of citations.

1. A senior author who published her papers long ago is more likely to have accumulated more citations
than a young scientist. However, the possible fact that a senior’s data articles are still being cited
should be factored in for a fair global ranking.
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Figure 5: Complementary CDF showing the heavy tail of Neuroscience citations. Red: data article citations.
Blue: random article citations.
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2. Second, being the author of just one top-cited article could result in a larger sum (index rank) than
being the author of many averagely cited articles due to the very heavy tails of the citation distributions.
This implies that all co-authors of the most cited article(s) dominate the ranking.

Our intent therefore is to introduce a ranking that can mitigate these effects.

First, the datasets need to be transformed to calculate an author-centric citation index. The datasets contain
article citations, i.e., the citation data are provided on a per-article basis. To extract the individual author
citations from the datasets, we create an aggregate function to determine each author’s personal set of articles.

AggregateCitations <- function(sample)
aggregate(Citations~Author,

data.frame(Author=unlist(sample$AU),
Citations=rep(sample$TC, sapply(sample$AU, length))),

sum)

# helper function to split author name strings into individual authors
SplitAuthors <- function(authors) sapply(strsplit(authors, "; "), unique)

By summing up the citation counts of each neuroscientist’s data articles, we get the following top-ten ranking:

NS.split <- data.frame(NS.data)
NS.split$AU <- SplitAuthors(NS.split$AU)
NS.agg <- AggregateCitations(NS.split)
head(NS.agg[with(NS.agg, order(-Citations)),], 10)

## Author Citations
## 19999 Williams, Brian A 2670
## 11854 McCue, Kenneth 2619
## 12642 Mortazavi, Ali 2619
## 16098 Schaeffer, Lorian 2619
## 20124 Wold, Barbara 2619
## 17121 Smith, Stephen M 2333
## 1161 Beckmann, Christian F 2255
## 1188 Behrens, Timothy E J 2124
## 8357 Jenkinson, Mark 2069
## 20226 Woolrich, Mark W 2062

Similarly, in Molecular Biology, we get:

## Author Citations
## 1530 Altschul, S F 78500
## 49886 Lipman, D J 76777
## 56742 Miller, W 75933
## 59379 Myers, E W 45555
## 96903 Zhang, J 44075
## 28149 Gish, W 41236
## 52371 Madden, T L 38032
## 74701 Schaffer, A A 37551
## 97347 Zhang, Z 37218
## 89922 Wang, J 20384
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The two top data articles in Molecular Biology are the publications of BLAST and PSI-BLAST by Altschul
et al., each having approximately 40 thousand citations. If those two papers are removed from the set (as in
the next ranking below), the ranking changes substantially. As can be seen below, the nine co-authors7 of
those two most cited data papers occupied all the top ranks in the ranking shown above:

# exclude the BLAST and PSI-BLAST papers:
MB.agg <- AggregateCitations(MB.split[3:nrow(MB.split),])
head(MB.agg[with(MB.agg, order(-Citations)),], 10)

## Author Citations
## 89922 Wang, J 20384
## 43759 Koonin, E V 19161
## 6855 Birney, E 16968
## 36082 Hubbard, T 16905
## 21306 Durbin, R 16372
## 369 Adams, M D 16098
## 2490 Aravind, L 14857
## 6041 Berman, H M 14499
## 7976 Bork, P 14405
## 32603 Haussler, D 14282

It should be noted that there is no perceivable reason to exclude these two papers from the list of database
papers. Rather, this Gedankenspiel should show how brittle a pure “sum of citations” approach would be
with regard to minor fluctuations in the sample.

One problem that can be observed - and about which little can be done here - is the author first and middle
name abbreviation problem. For example, most of “P. Bork’s” and “Peer Bork’s” or “A. Bairoch’s” and
“Amos Bairoch’s” counts probably should be aggregated. But it is hard to judge if there is no other scientist
with the same initials, and it is impossible to fully separate those assignments based on the data we can get
from Thomson Reuter’s alone.

To partially address this matter, we abbreviate all first and middle names using two regular expressions,
thereby effectively normalizing all names. This choice implies that authors with many publications are better
represented in our results, because their index value is no longer divided between their abbreviated and
full name. It comes at the cost of sacrificing the ability to reliably find the correct index value of mid- and
low-ranking authors with their full name if their (first and middle name) initials happen to coincide with
a higher-ranked author. While top authors therefore will have artificially increased counts from coinciding
names, this increase can be expected to be proportionally smaller due to the power-law behavior of citation
counts. A remaining problem is top authors whose names coincide or if they have very common names.
However, as this index only considers data authors, the absolute number of possible name collisions is
proportionally lower than for the set of names from the entire scientific bibliome.

NormalizeFirstNames <- function(name_lists)
lapply(name_lists, function(authors)

gsub(", ([A-Z])[a-z]+[ -]", ", \\1 ",
gsub("[ -]([A-Z])[a-z]+$", " \\1",

authors)))

To dampen the dominant effect of the most cited papers, it is more appropriate to calculate a sum of logs
instead of the sum (Radev et al. 2009) to establish a data article citation index (DAC-index). This
can be further justified by the fact that the log-normal is a valid distribution model for citation counts, as
discussed earlier.

7That is: Altschul, S F; Gish, W; Miller, W; Myers, E W; Lipman, D J, Altschul, S F; Madden, T L; Schaffer, A A; Zhang, J;
Zhang, Z; Miller, W; Lipman, D J

22



D = log
∏

ni =
∑

log ni

Where ni is the citation count for data article i by the author being indexed. Note that any base will do for
the logarithm, as it does not influence the relative ordering of authors.

One effect of this log-based index is that it gives authors of many medium-impact papers an edge over authors
only appearing on the one or two most cited papers. Another good reason for using a sum of logs is that it is
more favorable towards authors that might be working in a sub-discipline that gains relatively less citations
(e.g., if she is working on some rare model organism). A third effect is that an author with many papers with
only very few citations each can accumulate citation impact, too. While that last issue might not immediately
appear as desired, the actual work required to create that many publications should be acknowledged to
some extent; Not the least because paradigm-changing work can sometimes go unnoticed for years and even
decades without picking up a justified number of citations (Wang, Song, and Barabási 2013). Finally, in
comparison to more elaborate procedures, using the sum of logs is a simple calculation and therefore follows
the principle of Occam’s razor.

Returning to the two problems stated in the beginning of this section, the DAC-index solves both: A senior
scientist still can more easily accumulate more citation impact, but due to log-scaling and the fact that
newer articles generally receive more citations, it is easier for young scientists to catch up. And only being a
co-author of the top cited article(s) without any further data publications is no longer sufficient to dominate
the ranking.

This leads to the following, final DAC-index ranking for Neuroscience:

NS.agg <- data.frame(AU=I(NS.split$AU), TC=log(NS.split$TC, 2), PY=NS.split$PY)
NS.agg$AU <- NormalizeFirstNames(NS.agg$AU)
NS.agg <- AggregateCitations(NS.agg)
NS.ranking <- NS.agg[with(NS.agg, order(-Citations)),]
head(NS.ranking, 20)

## Author Citations
## 17165 Toga, A W 113.12707
## 10692 Marmarou, A 108.01908
## 11904 Murray, G D 76.32372
## 10344 Maas, A I R 68.02451
## 16362 Steyerberg, E W 67.02451
## 10219 Lu, J 66.45297
## 3952 DeVivo, M J 62.37555
## 2167 Butcher, I 60.28305
## 11037 McHugh, G S 60.28305
## 17727 Van Essen, D C 57.99922
## 10717 Marshall, L F 55.54335
## 17066 Thompson, P M 53.89455
## 5194 Foulkes, M A 50.69958
## 6006 Gordon, E 47.96464
## 11961 Nagase, T 47.43339
## 18642 Williams, R W 47.33676
## 4037 Diener, H C 46.86433
## 11543 Mohr, J P 46.40805
## 8976 Kotter, R 44.47459
## 11916 Mushkudiani, N A 43.89941

Applying the same methodology to Molecular Biology authors give the following DAC-index ranking:
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## Author Citations
## 3426 Bairoch, A 685.2188
## 37179 Koonin, E V 365.7870
## 18379 Dunker, A K 307.6099
## 18483 Durbin, R 305.4136
## 61863 Sali, A 271.6663
## 66334 Skolnick, J 253.7186
## 29690 Hochstrasser, D F 235.2157
## 62123 Sanchez, J C 229.1041
## 2154 Appel, R D 226.7728
## 73119 Uversky, V N 222.6697
## 3461 Baker, D 213.0058
## 12233 Chothia, C 208.2536
## 19007 Eisenberg, D 198.0262
## 8661 Bucher, P 178.5349
## 40901 Levitt, M 174.9632
## 61374 Rychlewski, L 173.0159
## 52054 Obradovic, Z 170.4503
## 26038 Gromiha, M M 168.5819
## 33474 Jones, D T 165.3952
## 64955 Shen, H B 163.1558

The chosen cutoff of showing the top 20 ranks was made arbitrary.

Data author comparisons

Building on the DAC-index result, we establish if the data articles have an significantly stronger citation
impact compared to the author’s other articles. (Note that to ensure a fair comparison the selected articles
are exclusively from the author’s respective field (NS or MB), and do not include her articles from any other
field.)

CompareAuthor <- function (all.articles, data, author.name) {
# Extract the data articles from an author's article set
data.articles = semi_join(all.articles, data, by="PM")
other.articles = anti_join(all.articles, data, by="PM")
# Apply a one-sided rank-sum test and report
test.result = wilcox.test(data.articles$TC, other.articles$TC,

alternative="greater", exact=F)
cat(author.name, "\n")
cat("median citation counts other =", median(other.articles$TC),

"from", length(other.articles$TC), "articles\n")
cat("median citation counts data =", median(data.articles$TC),

"from", length(data.articles$TC), "articles\n")
cat("one-sided rank-sum p-value =", test.result$p.value, "\n")

# Visualize the two distributions as side-by-side box-plots
# NB: has to be calculated before modifying the 0s!
mean.other = mean(other.articles$TC)
mean.data = mean(data.articles$TC)
# Modify 0s to allow for a log-scaled boxplot with zero-citations
other.articles$TC[other.articles$TC==0] = 0.1
data.articles$TC[data.articles$TC==0] = 0.1
boxplot(other.articles$TC, data.articles$TC,
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names=c("Other", "Data"), notch=F, log="y", las=2,
ylab="Citations",
yaxt="n", cex.axis=0.7)

# Add x-mark of the mean of the distributions
points(1, mean.other, pch=4)
points(2, mean.data, pch=4)
# Add author name as title, with test significance stars
stars = symnum(test.result$p.value, corr=F,

cutpoints = c(0, .001, .01, .05, .1, 1),
symbols = c("***","**","*","."," "))

title(paste0(author.name, stars[[1]]))

# Calculate and draw a clean citation count axis
ymin = floor(log(min(data.articles$TC, other.articles$TC), 10))
ymax = ceiling(log(max(all.articles$TC), 10))
yseq = seq(ymin, ymax, length.out=6)
ylabs = format(10^yseq, trim=T, scientific=F, digits=0, format="f")
axis(2, at=10^yseq, labels=ylabs)

}

In Figures 7 and 8, the side-by-side box plots of each of the top ten authors in both fields are shown. Based
on a one-sided Wilcoxon rank-sum test, we establish if the differences between their entire citation sets
and “other” (non-data) citation count distributions are statistically significant. This is indicated by the
asterisk/star notation of significance levels (*p < 0.05, **p < 0.01, ***p < 0.001) in the author names (titles).
In other words, the data citation impact of authors that are “decorated with stars” is significantly stronger
than their other, non-data article citation impact. The difference is quantified by the two medians below.

Neuroscience authors:

par(mfrow=c(2,5))
for (name in names(NS.aut)) {

CompareAuthor(NS.aut[[name]], NS.data, name)
}

## Butcher
## median citation counts other = 18.5 from 16 articles
## median citation counts data = 79 from 10 articles
## one-sided rank-sum p-value = 0.002033657

## DeVivo
## median citation counts other = 24 from 84 articles
## median citation counts data = 56 from 15 articles
## one-sided rank-sum p-value = 0.02042069

## Lu
## median citation counts other = 14 from 171 articles
## median citation counts data = 79 from 10 articles
## one-sided rank-sum p-value = 0.0001250827

## Maas
## median citation counts other = 18.5 from 74 articles
## median citation counts data = 79 from 12 articles
## one-sided rank-sum p-value = 0.0008404096
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## McHugh
## median citation counts other = 25 from 11 articles
## median citation counts data = 79 from 10 articles
## one-sided rank-sum p-value = 0.01885458

## Marmarou
## median citation counts other = 26 from 199 articles
## median citation counts data = 80 from 17 articles
## one-sided rank-sum p-value = 0.0001465897

## Murray
## median citation counts other = 33 from 86 articles
## median citation counts data = 81 from 13 articles
## one-sided rank-sum p-value = 0.01556908

## Steyerb.
## median citation counts other = 19.5 from 90 articles
## median citation counts data = 81 from 11 articles
## one-sided rank-sum p-value = 4.62999e-05

## Toga
## median citation counts other = 29 from 522 articles
## median citation counts data = 21 from 31 articles
## one-sided rank-sum p-value = 0.9149317

## Van Essen
## median citation counts other = 65 from 130 articles
## median citation counts data = 67 from 10 articles
## one-sided rank-sum p-value = 0.5817354

par(mfrow=c(1,1))

Molecular Biology authors:

par(mfrow=c(2,5))
for (name in names(MB.aut)) {

CompareAuthor(MB.aut[[name]], MB.data, name)
}

## Appel
## median citation counts other = 32 from 34 articles
## median citation counts data = 33.5 from 44 articles
## one-sided rank-sum p-value = 0.2386653

## Bairoch
## median citation counts other = 52 from 47 articles
## median citation counts data = 88.5 from 110 articles
## one-sided rank-sum p-value = 0.01216537

## Dunker
## median citation counts other = 30.5 from 124 articles
## median citation counts data = 54.5 from 54 articles
## one-sided rank-sum p-value = 0.001519785
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Figure 7: Box-and-whisker plots of data vs. other (non-data) citation count distributions for the top-
ten Neuroscience data authors. Title asterisks: rank-sum test significance levels (*p<0.05; **p<0.01;
***p<0.001). Additional x-mark: sample mean. Whisker sizes: 1.5 interquartile ranges.
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## Durbin
## median citation counts other = 78.5 from 64 articles
## median citation counts data = 148 from 44 articles
## one-sided rank-sum p-value = 0.008748146

## Hochstr.
## median citation counts other = 22.5 from 146 articles
## median citation counts data = 55 from 46 articles
## one-sided rank-sum p-value = 0.001811152

## Koonin
## median citation counts other = 55 from 444 articles
## median citation counts data = 89.5 from 56 articles
## one-sided rank-sum p-value = 0.0009783556

## Sali
## median citation counts other = 35 from 227 articles
## median citation counts data = 42 from 52 articles
## one-sided rank-sum p-value = 0.1638974

## Sanchez
## median citation counts other = 24 from 133 articles
## median citation counts data = 59 from 41 articles
## one-sided rank-sum p-value = 0.001213024

## Skolnick
## median citation counts other = 28 from 154 articles
## median citation counts data = 42 from 49 articles
## one-sided rank-sum p-value = 0.01283627

## Uversky
## median citation counts other = 26.5 from 258 articles
## median citation counts data = 47 from 43 articles
## one-sided rank-sum p-value = 0.02428859

par(mfrow=c(1,1))

Note that it might seem appealing to ask if data articles play a significant role in an author’s overall citation
impact. However, that is a poorly formulated hypothesis, as it depends more on the relative fraction of data
articles than on the specific citation counts. To put it in plain words, adding a few outliers with otherwise
mostly similar data should not have a significant impact on the median. In fact, only Bairoch’s overall
citation impact significantly increases because of his data articles, while all other authors’ does not (data not
shown). Which can be easily predicted from the fact that only Bairoch has more data articles than other,
non-data articles (and with McHugh being the obvious, second-best candidate).

An online DAC-index

As the citation counts from Thomson Reuters ISI WoK cannot be accessed programmatically, the data had
to be downloaded manually in batches of 500 citations. Therefore, it only was possible to establish a static
DAC-index for the purpose of this publication. In the future, if Thomson Reuters were to provide open
(web-) access to their citation data for public, scientific purposes, it would be possible to generate an online,
continuosly up-to-date version of this index.
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Figure 8: Box-and-whisker plots of data vs. other (non-data) citation count distributions for the top-ten
Molecular Biology data authors. Title asterisks: rank-sum test significance levels (*p<0.05; **p<0.01;
***p<0.001). Additional x-mark: sample mean. Whisker sizes: 1.5 interquartile ranges.
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